Standardization of Dasana-Samasarkara Curna - A Polyherbal Ayurvedic Formulation

Manoj Tripathi, Neelesh Dwivedi and Ashok Tiwari
Arogyadham (J.R.D. Tata Foundation for Research in Ayurveda & Yoga Sciences), Deendayal Research Institute, Chitrakoot, Satna (M.P.) - India

Abstract

India is vast repository of medicinal plants that are used in traditional medical treatments. Herbal medicines as the major remedy in traditional system of medicine have been used in medical practices since antiquity. Medicinal plants play an important role in the development of potent therapeutic agents. To keep this view in mind, a polyherbal Dasana-Samasarkara Curna is formulated in house, which is very effective in Mukharoga (disease of mouth), Dantaroga (disease of tooth). It formulated using ten single drugs viz. Zingiber officinalis Roxb.(rhizome), Terminalia chebula Retz.(fruit), Cyperus rotundus Linn.(rhizome), Acacia catechu (Linn.f) Willd,(heart wood), Cinnamomum camphora (L.) Nees & Ebrm & ocimum kilimandscharicum guerke(sub.Ex.), Areca catechu Linn.(seed bhasma), Piper nigrum Linn.(fruit), Syzygium aromaticum (Linn.) Merr.& M. Perry (flower), Cinnamomum zeylanicum Blume(stem bark), Kathini (khatikã) Kaolinite (Clay)1.

Key-Words: Standardization, Dasana-Samasarkara Curna, Powder microscopy, HPTLC, Physico-chemical

Introduction

Herbs had been used by all cultures throughout history. It was an integral part of the development of modern civilization. Ayurveda like traditional medical science is the one of the most ancient medical science of the world. Basic feature of Ayurveda is its holistic approach to treat human beings as a whole and it restore harmony among the human beings, plants and environment. By knowing the standards of a medicine following qualitative and quantitative parameters and method followed in single and formulated drug can improve the efficacy and efficiency of drug as well as confidence of doctor and patient.

Goal of standardization is to assess the authenticity of the drug based on the above principal. To keep this view in mind, a polyherbal Dasana-Samasarkara Curna is formulated in house, which is very effective in Mukharoga (disease of mouth), Dantaroga (disease of tooth). It formulated using ten single drugs viz. Zingiber officinalis Roxb.(rhizome), Terminalia chebula Retz.(fruit), Cyperus rotundus Linn.(rhizome), Acacia catechu (Linn.f) Willd,(heart wood), Cinnamomum camphora (L.) Nees & Ebrm & ocimum kilimandscharicum guerke(sub.Ex.), Areca catechu Linn.(seed bhasma), Piper nigrum Linn.(fruit), Syzygium aromaticum (Linn.) Merr.& M. Perry (flower), Cinnamomum zeylanicum Blume(stem bark), Kathini (khatikã) Kaolinite (Clay)1.

* Corresponding Author
E-mail: trimanoj391@gmail.com
Present study described the Standardization of Dasana-Samasarkara Curna-A Polyherbal Ayurvedic Formulation and its single ingredients2. Both are useful in Siddha, Unani and Ayurveda as single or in combination with other drugs. Hence the purpose of standardization of raw drugs and formulation is obviously to ensure the therapeutic efficacy of the drug3.

Material and Methods

Method of Preparation of the Curna

All the ingredients of the Dasana-Samasarkara Curna were used in pharmacopoeial quantity4. These were washed, dried and ground individually passed through 180µm separately then weighed separately, mixed in specified ratio and passed through 355µm to obtain a homogenous blend. Stored in air-tight container to protect from light and moisture. Three different samples of Dasana-Samasarkara Curna, two samples were prepared at research laboratory Ayurveda Sadan, Chitrakoot Batch-A and Batch-B where Batch-C was prepared by Chitrakoot Ras-sahalsa Pharmacy.
Method of Slide Preparation for Microscopic Characters

For microscopic analysis, about 10 g of formulated curma in a small beaker, added water, stir thoroughly and pass through 150 μm IS Sieve (old sieve number 100) to remove kathini; repeat the process of washing, collect the plant residue on the sieve and wash thoroughly with potable water repeatedly without loss of plant material; mount a small mount a small portion in glycerine; warm a few portion in glycerine; warm a few mg with chloral hydrate solution, treat a few mg with iodine in potassium iodide solution and mount in glycerine; treat a few mg with ferric chloride solution and mount in glycerine; heat a few mg in 2 percent aqueous potassium hydroxide, wash in water and mount in glycerine. Take about 0.5 g of sample and add 50 percent conc. Nitric acid in a test tube and warm over water bath till brown fumes appear; add a few crystals of potassium chlorate cool and wash with water thoroughly and mount a small portion in glycerin. Observed the characteristics in the various mounts.

Physicochemical Tests

Organoleptic characters, particle size and physico-chemical analysis of all the samples were carried out. Quantitative analysis for loss on drying at 105°C, alcohol soluble extractive, water soluble extractive, total ash, acid insoluble ash and pH of filtrate of 10% alcohol soluble extractive, water soluble extractive, total ash, acid insoluble ash and pH of filtrate of 10% aqueous solution were checked in triplicate.

High Performance Thin Layer Chromatography (HPTLC) Profile

For HPTLC, 2 gm of each sample was extracted with 25 ml of methanol on boiling water bath for 25 minute consecutively of 3 times using fresh portion of 25 ml methanol, filtrate and concentrated. TLC of extracts of all the samples was carried on Silica Gel 60 F254 precoated plates (0.2 mm thickness; from Merck India Limited Mumbai). An applicator from Camag Linomat-5 (Camag Switzerland 140443) was used for band application and photo documentation unit (Camag Reprostar-3: 140604) was used for documentation of chromatographic fingerprints. The mobile phase used Toluene: Ethyl acetate (7:3). The plate was developed over a distance of 9 cm in a saturated development chamber (Twin trough chamber (10 x 10 cm with SS lid), and visualized under visible light, 254nm and 366nm. After spraying with 5% methanolic sulphuric acid followed by heating at 110°C for 5-10 minute.

Microbiological Tests

PDA, Mac-conkey broth, XLD, plate count agar, Cetrimide agar and Staphylococcus aureus enriched agar media were used for the isolation of the Yeas & Moulds, E.coli, Salmonella sp., TBC, Staphylococcus sp. & Pseudomonas sp. To perform this test different proportion of different media were dissolved in different flasks containing distilled water. All the media were prepared and autoclaved at 15 lb/in² pressure at 121°C for 15-20 minutes. After autoclaving media were poured into Petriplates and allowed to solidify. Plates were prepared & marked for different isolated. Culture suspension was prepared in 1 gm of test sample in 100 ml. mdistilled wter. 0.1 ml suspension was spreaded on the plates with the help of spreader. All plates were prepared, inoculated & incubated at 26-28°C for 24-28 hours. After incubation period, the observations were taken for presence or absence of the colonies. The concentration of different microorganisms and media used were given.

Results and Discussion

Daśan Samskāra cūrṇa samples from 2 different manufacturers, Batch A, Batch B, Batch C, were subjected to analysis as above. All samples were grayish white powder with a characteristics spicy odour and taste. The powder completely passes through 355um IS Sieve and not less than 50% through 180 um IS Sieve. The result of loss on drying at 105°C 7%, total ash content 44%, acid insoluble ash16%, alcohol soluble extractive values 6%, water soluble extractive value5%, and pH 5.45-6 were calculated and are given in Table-1.1 to 1.3. Microscopic examinations were also carried out to see presence of the different ingredients in all 3 samples of Daśan Samskāra cūrṇa (Fig. 1-2). Parenchymatous cells containing oleo-resin, oval to round starch grains not less than 15μ to 30μ and several up to 70μ with hilum ecentric, lamellae distinct, pitted, septate fibres with indentations on its walls (Śunthi); thick walled elongated sclereids of various shapes and sizes, pitted parenchymatous cells, polygonal cells with beaded walls and several showing thin septum, fibres with peg like growth near tips, lumen broad and criss- cross layer of fibre groups (Haritakî); fibre sclereids from scale leaves in packed rows, beak shaped starch grains 6μ to 28μ, narrow vessel units with scalariform thickening (Mustā); crystal fibres associated with phloem fibres, longitudinally cut medullary rays surrounding with phloem parenchyma filled with starch grains, prisms and yellow contents, xylem fibres with brown contents (Khadira); hypodermal parenchyma interspersed with stone cells, thick walled polygonal stone cells from testa (Marica); small rounded triangular tetrahedral pollen grains 15μ-20μ, elongated parenchymatous cells containing rosette crystals of calcium-oxalate, fragments of epidermal cells with anomocytic stomata in surface view, shizolyisigenous oil cells (Davapuspā); parenchymatous cells containing minute acicular...
crystals of calcium-oxalate, fibres with narrow lumen, 250µ-600µ long and 25 µ-45µ broad, cells from cortex with thick inner periclinal walls as well as cells with three thick inner walls (Tvaka). Plate-1 (Fig.1-5 and Plate-2, Fig. 6-7)
TLC of methanolic extracts of all the samples were carried out on Silica gel plates (Plate-3, Fig. 1-4). Several bands were observed, some of which were specific to the individual ingredients. These bands were chosen to identify the presence or absent of the individual ingredients in each of the three samples. It was observed that all three identifying bands were present in all of Curna samples thereby indicating the presence of all the 10 ingredients in each of them. Table 2.1- 2.4 enlist identifying bands of the individual ingredients along with their Rf values.

Table 1.1: Physico-chemical parameters of Daśan Samskāra cūrṇa and used single raw drugs

<table>
<thead>
<tr>
<th>Name of Curna with ingredients</th>
<th>LOD (% w/w)</th>
<th>Total ash (% w/w)</th>
<th>AI ash (% w/w)</th>
<th>ASE (% w/w)</th>
<th>WSE (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch -A</td>
<td>6.53</td>
<td>43.90</td>
<td>15.11</td>
<td>5.3</td>
<td>7.2</td>
</tr>
<tr>
<td>Batch- B</td>
<td>6.50</td>
<td>43.54</td>
<td>15.15</td>
<td>5.1</td>
<td>6.7</td>
</tr>
<tr>
<td>Batch- C</td>
<td>6.49</td>
<td>43.54</td>
<td>15.16</td>
<td>5.1</td>
<td>6.9</td>
</tr>
<tr>
<td>Sunthi</td>
<td>8.68</td>
<td>6</td>
<td>0.97</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Haritaki</td>
<td>6.09</td>
<td>3.24</td>
<td>3.28</td>
<td>48.11</td>
<td>63.78</td>
</tr>
<tr>
<td>Musta</td>
<td>7.54</td>
<td>2.87</td>
<td>1.86</td>
<td>9.78</td>
<td>17.40</td>
</tr>
<tr>
<td>Khadira</td>
<td>8.49</td>
<td>1.19</td>
<td>0.12</td>
<td>3.83</td>
<td>6.16</td>
</tr>
<tr>
<td>Marica</td>
<td>6.95</td>
<td>4.28</td>
<td>0.43</td>
<td>7.14</td>
<td>11.46</td>
</tr>
<tr>
<td>Lavanga</td>
<td>3.22</td>
<td>5.36</td>
<td>0.66</td>
<td>14.16</td>
<td>28.06</td>
</tr>
<tr>
<td>Tvak</td>
<td>8.15</td>
<td>2.9</td>
<td>1.8</td>
<td>4.77</td>
<td>4.73</td>
</tr>
</tbody>
</table>

Table 1.2: Physicochemical properties of Karpura

<table>
<thead>
<tr>
<th>Name of tests Identification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting range</td>
<td>175(^0) to 177(^0)</td>
</tr>
<tr>
<td>Specific optical rotation</td>
<td>+41^0, +43^0</td>
</tr>
<tr>
<td>Non-volatile matter</td>
<td>0.04</td>
</tr>
<tr>
<td>Camphor</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table 1.3: Physicochemical properties of khatika

<table>
<thead>
<tr>
<th>Test Nature</th>
<th>Physical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour</td>
<td>Whitish, occasionally tinted</td>
</tr>
<tr>
<td>Streak</td>
<td>White</td>
</tr>
<tr>
<td>Cleavage</td>
<td>Not observable</td>
</tr>
<tr>
<td>Fracture</td>
<td>None</td>
</tr>
<tr>
<td>Transparency</td>
<td>Translucent</td>
</tr>
<tr>
<td>Silica</td>
<td>45%</td>
</tr>
<tr>
<td>Alumina</td>
<td>54%</td>
</tr>
<tr>
<td>Distinctive Properties</td>
<td></td>
</tr>
<tr>
<td>Small quantity of Khatika powder stained with alcoholic methylene blue solution</td>
<td>Most particles are stained a deep blue</td>
</tr>
<tr>
<td>Small quantity of Khatika powder stained with Safranin solution</td>
<td>None or very few particles are coloured red</td>
</tr>
<tr>
<td>Small quantity of Khatika powder added few drops of hydrochloric acid</td>
<td>No gas or bubbles evolved</td>
</tr>
</tbody>
</table>
Conclusion

Present studies, it can be calculated that the microscopical characteristics and the distinguishing band in the HPTLC profiles are very important for monitoring the quality of the Curna formulation as well as for establishing whether all the required ingredients are present in them. Also standardization and development for reliable quality protocols for Ayurvedic formulations are important for keeping a check on batch to batch variations. Hence, the physicochemical parameters, quantitative analysis, HPTLC fingerprinting profiles and the microscopic characteristics together may be used for quality evaluation and the standardization of compound formulations and maintaining their quality, purity and efficacy.

Acknowledgement

Authors are thankful to Dr. Bharat Pathak, General Secretary Deendayal Research Institute, Chitrakoot for providing the research facilities. Authors are also thankful to Department of AYUSH, Ministry of Health and Family Welfare and Government of India for providing the financial support.

References

Plate-1: Powder Characteristics of Dasana-Samasarkara Curna

Starch grains

Parenchymatous cells containing oleo-resin

Pitted septate fibres

Fibre-sclereids from scale leave cells

Beaker shaped starch grains

Fibres

Scalariform vessel

Groups of sclereids

Pitted parenchymatous cells

Fibres

Group of fibres

Epidermal cells with septa

Fig. 1: Śuṇṭhi

Fig. 3: Mustā

Fig. 2: Haritakī
Fig. 4: Khadira

- Fibres associated with prismatic crystal
- Medullary rays surrounding with phloem parenchyma
- Xylem fibres with brown content

Fig. 5: Marica

Plate 2: Powder characteristics of Daśan Samskāra cūrṇa

- Hypodermal parenchyma with stone cells
- Thick walled polygonal stone cells
- Pollen grains
- Elongated parenchyma with rosette crystals
- Parenchyma containing minute acicular crystals of calcium-oxalate

Fig. 6: Davapuspa (Lavanga)

- Fragments of epidermal cells with anomocytic stomata in surface view
- Fragments of shizolysigenous oil cells
- Fibres

Fig. 7: Tvaka

- Stone cells
Plate 3: TLC finger prints

Fig. 1-2: TLC profile under 254 nm & 366 nm Track 1: Batch A, Track 2: Batch B, Track 3: Batch C

Fig. 3-4: *Dragon-dorff*’s reagent under 366 nm & visible light Track 1: Batch A, Track 2: Batch B, Track 3: Batch C
Plate 4: Determination of microbial load

Fig. 1.1: Showing Total Bacteria count
Fig. 1.2: Showing Yeast & Moulds
Fig. 1.3: Showing negative result for Pseudomonas aeruginosa
Fig. 1.4: Showing negative result for Salmonella

Fig. 1.5: Showing negative result for E. coli
Fig. 1.6: Showing negative result for Staphylococcus aureus

How to cite this article

Source of Support: Nil; Conflict of Interest: None declared

Received: 05.07.14; Revised: 21.07.14; Accepted:16.08.14