A Study of Adverse Reactions on Pediatric Patients

P. K. Valsalakumari*, G. R. Rajalakshmi and Helen William

College of Pharmaceutical Sciences, Medical College, Gandhinagar, Kottayam, (Kerala) - India

Abstract

The study of Adverse Drug Reactions was carried in 300 pediatric inpatients at Institute of Maternal and Child Health, Govt. Medical College, Kottayam, belonging to the age group of 1-10 years between the periods from January 2009 to December 2011. ADR was accessed for patients treated with various antibiotics, anti-viral, anti-fungal drugs etc. Data’s were collected by directly visiting the home of individual patients. The concluded result showed a 10% incident rate of ADRs out of which the male showed a higher incident rate with 66.66% when compared to female with 33.33%. The antibiotic class mostly affected with ADRs was cephalosporin (23.33%) followed by penicillin (20%). GIT was the organ system to be most affected (53.30%) followed by skin (26.70%) by ADRs. Also the Type A reaction (86.70%) was most common when compared to Type B (13.30%) reactions. The conclusive data suggests measures to improve detection and reporting of adverse drug reactions by all health care professionals, especially pharmacists and to develop and follow proper antibiotic guidelines for the prescription of the antibiotics. This would not only reduce the cost for treatment but also provide a better healthcare.

Key-Words: Pediatric patients, Adverse drug reactions, Antibiotics

Introduction

A wide range of drugs has been reported as being involved in ADR's in children. This include antibiotics NSAIDS, opiates, tuberculostatics, immunosuppressive agents, anticonvulsants etc. Incompletely developed intrinsic defense mechanisms predispose infants and neonates to infections and risks such as kernicterus or haemolytic anemia with sulphonamides and hearing loss with amino glycosides1. Developmental bone growth can be retarded with the use of tetracyclines and corticosteroids in children younger than 8 years of age. Percutaneous absorption of drugs is significantly enhanced in infants and children. Topical use amino glycoside- polymyxin sprays in young children has lead to permanent hearing loss and hexachlorophene sprays in neonates has caused neurotoxic related to increased absorption2. ADR's has been reported to occur frequently in children but not as frequently as in adults. Infants and very young children are at high risk of developing adverse drug reactions than adults because their capacity to metabolize drugs is not fully developed. For example new born cannot metabolize and eliminate the antibiotic chloramphenicol, new born who are given the drug may develop grey baby syndrome, a serious and often fatal reaction3.

If tetracycline another antibiotic is given to infants and young children during the period when their teeth are being formed [up to about age 8 years] it may permanently discolor tooth enamel4. There are few publications among pediatric patients, though ADR incidence is usually stated to be higher in pediatric population. ADR's may adversely effects patients quality of life. It increases costs of patient care and may mimic disease resulting unnecessary investigation and delay treatment.

Material and Methods

Study design

This retrospective and follow up study was decided to conduct at, a community-based, tertiary care, teaching hospital ADRs are identified through several methods, including direct observation, participation in medical rounds, and notification by physicians and nurses. In our study, ADR report forms that were completed for pediatric patients (including neonates, infants & children) during their hospital stays between January 2009 to December 2011 were reviewed.

Study Setting

Data’s collected from the tertiary care teaching hospital was identified and sorted according to the following criteria:

1. Age group (1-10 year)
2. Belonging to January 2009 to December 2011

* Corresponding Author
E.mail: lekshmisiju@gmail.com

© Sakun Publishing House (SPH): IJPLS
3394
Duration of Study
November 2011 to November 2013 (Two years)

Inclusion criteria
1) Pediatric patients, aged between 1-10 years, treated with anti infective agents
2) Both male and female pediatric inpatients treated with antibiotics, anti viral, antifungal drugs etc are included in the study.

Exclusion criteria
1) Drug reactions that results due to medication errors, use of alternative systems of medicines, departments like Dentistry, Oncology, surgery etc are excluded from the study.

Study variable
ADR caused by anti infective agents in pediatric inpatients between age group 1-10 years. The suspected ADRs produced by commonly used antibiotics like ampicillin, amoxicillin, cephalosporins, azithromycin, erythromycin, linezolid etc. Then antiviral drug acyclovir, oseltamivir, anti-TB drug ethambutol etc was monitored by this study.

Procedure in detail
Retrospective Study of ADR events may have occurred at ICH, Medical College, Kottayam during the period of 2009-2011 and follow up study of such cases either by direct contact or telephonic information. Direct contact by visiting the home of individual patients by train, bus and auto .Then interview the patient and collected information from the patient related to the anti infective therapy and recorded. After a detailed analysis and study, we will submit the report.

A retrospective reporting study of ADRs was carried out in a general pediatric inpatient department of Institute of Maternal and Child Health, Govt. Medical College, Kottayam during 2009 to 2011. A total number of 300 pediatric patients will be included in the study. All the suspected ADR’s due to anti infective medication in pediatric inpatient aged between 1 to 10 years were noted and reported by various departments of this hospital are included in this study. Drug reactions that results due to medication errors, use of alternative systems of medicines, and departments like dentistry, surgery, oncology etc are excluded. The study was reviewed and approved by Institutional Ethics Committee of Medical College Kottayam. The causality assessment of the reported ADR’s was carried out using "Naranjo causality assessment scale. The Naranjo Algorithm, the drug reaction can be classified as definite, probable, as possible. The modified Schumock and Tornton Scale classify ADR’s as definitely preventable, probably preventable and not preventable based on a set of questions for each level. The modified Hartwig and Siegel Scale classifies severity of ADR as mild, moderate or severe with various levels according to factors like requirements for change in treatment, duration of hospital stay, and the disability produced by adverse drug reaction. The data for the study was taken from case sheets, treatment charts, investigation reports of patients who had experienced an ADR.

Analysis of Results
The data collected during the period are to be statistically analyzed for the following parameters.
- The total number of ADRs reported.
- Age groups and gender of the patients
- Assessment of causality based on ‘Naranjo Scale’
- Assessment of level of severity of ADRs using ‘Hartwig Scale’
- Assessment of Preventability using ‘modified Shumock and Thornton method’

Table 1: List of ADRs reported during the study period

<table>
<thead>
<tr>
<th>ANTI INFECTIVE AGENT</th>
<th>DOSAGE FORM</th>
<th>REPORTED ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENICILLIN</td>
<td>TAB</td>
<td>NAUSEA,GASTRIC IRRITATION</td>
</tr>
<tr>
<td>AMPICILLIN</td>
<td>INJ</td>
<td>LOOSE STOOLS, RASHES</td>
</tr>
<tr>
<td>METRONIDAZOLE</td>
<td>TAB</td>
<td>EPIGASTRIC DISTRESS, VOMITTING</td>
</tr>
<tr>
<td>AMOXYCILLIN</td>
<td>SYP</td>
<td>FATIGUE, ABDOMINAL PAIN, VOMITTING</td>
</tr>
<tr>
<td>VANCOMYCIN</td>
<td>INJ</td>
<td>MACULOPAPULAR RASH ON FACE, NECK</td>
</tr>
<tr>
<td>CEFTRIAXONE</td>
<td>INJ</td>
<td>THROMBOPHLEBITIS, CANNULA SITE INFLAMMATION,SHIVERING</td>
</tr>
<tr>
<td>AMIKACIN & CEFTRIAXONE</td>
<td>INJ</td>
<td>LOOSE STOOL</td>
</tr>
<tr>
<td>AMPICILLIN & CLOXACILLIN</td>
<td>TAB</td>
<td>NAUSEA, GASTRITIS</td>
</tr>
</tbody>
</table>
CIPROFLOXACIN | TAB | ITCHING, SKIN RASHES, TENDONITIS
CEFIXIME | TAB | DYSPEPSIA, SEVERE HEAD ACH
CLOXACILLIN | CAP | DIARRHOEA, EPIGASTRIC DISTRESS
ACYCLOVIR & CEFTRIAZONE | INJ | GREEN COLOURED LOOSE STOOL, HAIR FALL
ERYTHROMYCIN | TAB | GASTRITIS, GINGIVITIS, STOMATITIS
CEFTACIDINE | TAB | NAUSEA, DIARRHOEA
GENTAMICIN | INJ | DIARRHOEA, NAUSEA
CEFUROXIME | INJ | DIARRHOEA
CEFOTAXIME | INJ | DIARRHOEA, HEAD ACH
AMOXICILLIN & CLOXACILLIN | CAP | DIARRHOEA, MILD SKIN RASHES
CEPHALEXIN | DS TAB | LOOSE STOOL, GASTRITIS, NAUSEA, VOMITING
SEPTTRAN | TAB | NAUSEA, VOMITING
CEFPODOXIME | SYR | GASTRIC IRRITATION
OSELTAMIVIR | TAB | DISCOMFORT, INSOMNIA, COUGH
ACYCLOVIR | TAB | LOOSE STOOL, NAUSEA, VOMITING, DIARRHOEA
LINEZOLID | TAB | NAUSEA, VOMITING, DIARRHOEA
ETHAMBUTOL | TAB | LOSS OF APETITE, ABDOMINAL PAIN
AZITHROMycin | SYR | EPIGASTRIC DISTRESS, DIARRHOEA
CIPROFLOXACIN | TAB | MUSCLE PAIN, GASTRITIS
AMPCILLIN | CAP | ITCHING, RASHES
ALBENDAZOLE | TAB | ANOREXIA
OSELTAMIVIR | TAB | NAUSEA, ABDOMINAL PAIN

Results and Discussion

Total number of ADRs due to anti infective agents

<table>
<thead>
<tr>
<th>Total number of subject (N)</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reported ADRs</td>
<td>30</td>
</tr>
</tbody>
</table>

Among 300 pediatric patients treated with anti infective agents, 30 ADRs were reported and the incidence rate was found to be 10%.

Division of ADRs based on gender of the patients

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>66.66%</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>33.33%</td>
</tr>
</tbody>
</table>

The incidence rate was found to be more in males 20 (66.66%) and less in female pediatric patient 10 (33.33%).

Therapeutic class of anti infective agent

<table>
<thead>
<tr>
<th>Class of anti infective agents</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Glycopeptide</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Oxazolidinone</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Cephalosporin</td>
<td>7</td>
<td>23.33</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>2</td>
<td>6.66</td>
</tr>
<tr>
<td>Macrolides</td>
<td>2</td>
<td>6.66</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Co trimoxazole</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Amoebicide</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Anti TB</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Anthelmintic</td>
<td>1</td>
<td>3.33</td>
</tr>
<tr>
<td>Anthelmintic</td>
<td>2</td>
<td>6.66</td>
</tr>
<tr>
<td>Combinations</td>
<td>4</td>
<td>13.33</td>
</tr>
</tbody>
</table>

The antibiotic class mostly affected with ADRs in pediatric inpatients was cephalosporin 7
During the study period, a total of 30 adverse reactions of anti infective agents were reported among pediatric patients aged between 1 to 10 years among 300 pediatric inpatients; the incidence rate of antibiotic adverse reactions was found to be 10%. And about 20 (66.66%) male pediatric patients predominated over female 10 (33.33%) in ADR occurrence. This study was a retrospective follow up reporting study. Results revealed that GIT 16 (53.30%) was the most affected organ system by adverse reactions due to antibiotics followed by skin 8 (26.70%) and local reactions 6 (20%).

Preventability of reported ADRs was assessed using modified Shumock and Thornton method, 20 (66.70%) definitely preventable, while 10(33.33%) were probably preventable.

Causality assessment of ADRs (using Naranjo scale)

Using Naranjo scale for causality assessment 15(50%) was probable, 12 (40%) were possible, 3(10%) were unlikely.

During the study period, a total of 30 adverse reactions of anti infective agents were reported among pediatric patients aged between 1 to 10 years among 300 pediatric inpatients; the incidence rate of antibiotic adverse reactions was found to be 10%. And about 20 (66.66%) male pediatric patients predominated over female 10 (33.33%) in ADR occurrence. This study was a retrospective follow up reporting study. Results revealed that GIT 16 (53.30%) was the most affected organ system by adverse reactions due to antibiotics followed by skin 8 (26.70%). The Antibiotic class mostly affected with ADR in pediatric inpatients was cephalosporin 7 (23.33%) followed by penicillin 6(20%)and combination of two anti infective agents (13.33%).Of the reported ADRs, Type A 26 (86.70%) was most common compared to type B 4 (13.30%).

Route of administration of anti infective agents that cause ADRs

Among 30 reported ADRs 22 (73.33%) was due to oral route of administration and 8 (26.66%) parental.

Predictability of reported ADRs

Preventability of reported ADRs (using modified Shumock and Thornton method)

Preventability

<table>
<thead>
<tr>
<th>Preventability</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitely preventable</td>
<td>20</td>
<td>66.70</td>
</tr>
<tr>
<td>Probably preventable</td>
<td>10</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Preventability of reported ADRs was assessed using modified Shumock and Thornton method, 20 (66.70%) definitely preventable, while 10(33.33%) were probably preventable.

Causality assessment of ADRs (using Naranjo scale)

Using Naranjo scale for causality assessment 15(50%) was probable, 12 (40%) were possible, 3(10%) were unlikely.

During the study period, a total of 30 adverse reactions of anti infective agents were reported among pediatric patients aged between 1 to 10 years among 300 pediatric inpatients; the incidence rate of antibiotic adverse reactions was found to be 10%. And about 20 (66.66%) male pediatric patients predominated over female 10 (33.33%) in ADR occurrence. This study was a retrospective follow up reporting study. Results revealed that GIT 16 (53.30%) was the most affected organ system by adverse reactions due to antibiotics followed by skin 8 (26.70%). The Antibiotic class mostly affected with ADR in pediatric inpatients was cephalosporin 7 (23.33%) followed by penicillin 6(20%)and combination of two anti infective agents (13.33%).Of the reported ADRs, Type A 26 (86.70%) was most common compared to type B 4 (13.30%) reactions.

As per Naranjo scale 15 (50%) were probable, 12 (40%) were possible, 0 (0 %) were definite and 3% were unlikely. Of the reported ADRs moderate reactions accounted for 18 (60%) followed by mild 12(40%)and no reactions were found to be severe. Preventability of the reported ADRs was assessed and the result were revealed that 20 (66.70%) of the ADRS were definitely preventable, while 10(33.33%) were probably preventable.

Antibiotics are used for treatment and prophylaxis of various infectious conditions and are considered as safer drugs when used rationally. But, like other drugs, they also show some adverse reactions in various patient conditions. In the studies carried out in Nigerian children and R. Priyadharsini et al.5 antibiotics are the most accounted drug class in ADR occurrence. Infants and very young children are at high risk of developing ADRS than adults because their capacity
to metabolize drugs is not fully developed. In this study, predominance of male sex for adverse drug reactions may be due to majority of the admitted pediatric patients were male with more antibiotic use during the study period. The study conducted by Jimmy Jose et al. showed male predominance, where as two other studies by G.Starveva et al. and M.M Hussain et al. showed female predominance. More number of antibiotic adverse drug reactions were detected in general pediatric medicine department, and may be due to increased use of antibiotics in these departments for treatment and prophylaxis of various diseases. The documented antibiotic adverse drug reactions were mainly affecting GIT and skin and this study also pointed out the same. The results revealed that penicillin’s were the most accounted antibiotic class that causes ADRs in pediatrics. This result is in line with the study of R.Priyadharssini et al. ie, vancomycin and penicillins were most frequent in their study. Predictability of the reactions was based on the incidence of the reactions and literature reports, found that majority of them were predictable. Majority of the paediatrics were recovered from the ADRs because none of the reported reactions was fatal. Preventability analysis revealed that majority of the reactions were definitely preventable followed by probably preventable with only less number of them were not preventable. This is in line with the study of K.A.Oshikoya et al. and Jimmy Jose et al. According to a study conducted by Bates, antibiotics were responsible for 9% of preventable ADRs and 30% of non preventable ADRs.

Conclusion

Adverse drug reactions are one of the drug related problems in the hospital setting and it is a challenge for the ensuring drug safety. Antibiotics comprise the major volume of the drug family and inpatient prescriptions, and are the most irrationally prescribed drug class. So that implementation of antibiotic guidelines form the hospital scenario and strict adherence should be ensured to promote their rational use in children. The health system should promote the spontaneous reporting of adverse drug reactions, proper documentation and periodic reporting to regional pharmacovigilance centers to ensure drug safety. The most commonly prescribed drugs are those most often implicated in ADRs in children. Penicillins, cephalosporins, aminoglycosides, macrolides, antiviral agents, anthelmintics, etc. are the commonly prescribed class of anti-infective agents in pediatric department, during the study period. The antibiotic class mostly affected with ADRs was found to be penicillins followed by cephalosporins. The study concluded that spontaneous reporting of Adverse Drug Reaction is fairly good in our hospital setting. ADRs may increase costs of patient care and may mimic disease, resulting in unnecessary investigations and delay in treatment. Active involvement of a well trained clinical pharmacist for detecting the Adverse Drug Reaction and delivering the awareness classes for the healthcare professionals regarding the need of reporting ADRs, particularly those that are serious or rare.

References

How to cite this article

Source of Support: Nil; Conflict of Interest: None declared

Received: 12.02.14; Revised: 18.02.14; Accepted:06.03.14