Ethnopharmacological attributes of Polygala senega Linn.

Gaurav Sharma*, Alkesh Jhade, Sapna Malviya and Anil Kharia
Modern Institute of Pharmaceutical Sciences, Indore, (MP) - India

Abstract

Polygala senega Linn. species of a flowering plant in the Polygalaceae Family. The plant has been referred to as a marvel plant because every part of it has been found to be of medicinal magnitude. The present paper aims to review various plant species of Polygala from Indian origin and their constituents, which have been used in the traditional system of medicine to exhibit Hypoglycemic, Anticancer, CNS depressant, Hypolipidaemic and Antifungal activity.

Key-Words: Polygala senega, Hypoglycemic, Anticancer activity

Introduction

Herbal medicine is the oldest health care known to a mankind. An herb has been used to all cultures thought out history. It is an integral part of development of civilization primitive man observed and appreciated the great diversity of plants available to him. They observed that about 74% of 119 plant-derived pharmaceutical medicine are used in modern medicine. (1) It also estimated that 5 billion people (90% of the world population) presently used herbal medicine for health care for people. (2) Over 100 year herbal medicine are derived from medicinal plants minerals and organic matter is still the main stay of about 75-80% of the world population for health care marketed and gaining popularity in developed and developing countries. (3) Herbs have medicinal properties due to presence of different action principles like alkaloid, volatile oil, essential oil, glycoside resin, oleoressins, steroids, tannins, terpenes and phenols. (4). Medicinal plant research pursued with several goods like the development of low cost therapeutic compound and discovery of prototypic drugs (7). In the last few years there is an exponential growth in the field of herbal medicine because of their natural origin, easy availability, efficacy, safety and less side effects. With efficient to cure age related disorder like memory loss, Osteoporosis, immune disorder, etc, For which no modern medicine is available (5,6) Polygala senega is also play a wide role in herbal and allopathic medicines. It is a perpetual herb with many stems able to 50 cm tall. Stems are usually unbranched.

But some old foliage can have branch stems. A mature plant has stems upward from hard woody rootstock that spread horizontally. The lance shaped leaves are alternately arranged. They are mainly grown in summer season at India, and complete their life cycle in 4-5 month self pollination. (7,8)

Synonyms: snake root, polygala, rattle snake, var. latifolia (Japan).

Taxonomical class

Kingdom : Planate
Division : Magnoliophyta
Class : Magnoliopsida
Subclass : Rosids
Order : Fabales
Family : Polygalaceae
Genus : Polygala
Species : senega

Macrosspical character

Color : Dark brown ,purplish yellow.
Odour : Characteristic odour of methyl salicylate
Taste : Sweet and then acrid
Size : 5-20 cm. Dia 30-100cm
Appearance : A large knotty crown with a long tapering root normally curved twisted. Having two or more large branches.
Fracture : Short bark in splinterly in the wood.

Geographical source & distribution

The root has economic value so it is cultivated on a small scale particularly in India, Japan, Canada and Brazil. Until the 1960. India is the second largest exporter of the product. (31) But the root was collected from the wild, most come from Saskatchewan and Manitoba. It is still wild harvested today and three quarters of the world supply is taken from the wilds of the inner take region of Manitoba native peoples.
provide most of the labor digging roots and selling them to drug company. (10)

Plant* *Polygala senega*

Polygala senega is a perpetual herb with many stems able to 50 cm tall. Stems are usually unbranched. But some old foliage can have branch stems. A mature plant has stems upward from hard woody rootstock that spread horizontally. The lance shaped leaves are alternately arranged (11). The lower leaves are arranged and scale like the inflorescence spike of rounded white or greenish flowers. The fruit is covering with two hairy black seed (12). It’s taste like winter green and very pungent. There are two root morphs a northern morphs growing in Canada which are towards minnesota has longer root upto 15 cm long by 1.2 cm wide with dark brown and sometime purplish toward the top. The southern morph found in the south eastern united state that has smaller yellow brown roots. It also grows in Paris. Due to wet short time and river back habitat it can grows in thin rocky areas usually in calcareous soils and due to distributed habitat it may grow in roadsides. (11).

Growth and development

Polygala senega is a pioneer species can be found in flowering though-out the year in ever wet climate. In summer season they complete their life cycle in 4-5 month self pollination probably occurs in all species although the flowers of majority are attractive to insect and adaption to pollinating insect occur (13).

Ecology

The herbaceous polygala species are sun loving and grow in open woodland often grassland. In contrast to shrubby species they are restricted under growth of rain forest (16,17).

Growth pattern and germination

Polygala senega is a pioneer species can be found in flowering thought-out India. When the seeds coat is removed or deeply scarified, germination reaches 70-100% respectively suggesting the presence of a germination inhibitor in the seed coat(14). Washing the seeds in running water for 10 days results 60% germination maximus occurs in 25-28oC. The Diffused daylight gives better result in continuous light (15) The Dark period and red light stimulates germination of scarified seeds more than other wavelength .The optimum Ph for germination was 6.5 and gibberellic acid is effective in breaking the dormancy of both scarified and untreated seeds at rates of 100% and 70% respectively. Zieba R.(1996) has observed that *Polygala senegais* more productive then *Polygala tenuifolia*. It grows well in thin rocky areas usually in calcareous soil, but due to distributed habitat it may grow in roadsides. (16,17).

Major chemical constituents

Polygala senega contains two saponin glycoside (Figure 1) which are triterpenoid in nature. They contain senegen (4%) and polygalic acid (5.5%). Senegin on hydrolysis gives senegenin and senegenic acid and presenegin. It has been also reported that senega contains other derived form of presenegin called seneginII.The sweet taste of drug is due to polygalitol (1,6-anhydrobarbitol). The odor of drug is due to small amount of methyl salicylate which is formed as a result of brakedown of some unknown glycoside. Senega also contain fixed oil and sterol, but it does not contain starch.(31) *Polygala senega* contains salicylic acid and its methyl esters 0.1-0.2% hydroxy cinnamic acid (example : caffeine acid , ferucil acid sinapic acid) free from esterified with saponins (18). It also contain Carbohydrates, Arabinose, fructose sucrose, saccharoses, raffinose, melibiose,1,5anhydro _dilucitol and D_glucitol derivative (19). Paper trisaccharide, mucilage pectin aseries of oligosaccharide esters, senegosesA-o, containing acetic acid, benzoic acid trans and cis ferulic acid moietieslinked to glucose and fructose(20).The esterifying acids are 3,4,5 trimethoxyl cinnamic acid ,P_hydroxybenzoic acid ,sinapic and ferulic acid (22). It has a complex mixture of bidesmoidic triterpene saponin (6,10%) based on the aglycone presenegen. The total senegin mixture to be preferred to as senegen. The saponin of polygala senega var latifolia are glucosides of presenegin with tetra penta or hexa glucosyl groups linked at c-28 and including 4-methoxy cinnamyl ,fucosyl resulting in eand Z-cinnamyl isomer of each saponin(9-11).Senegin was first saponin to be characterized and were E isomer P. tenuifolia contain a similar properties named onjisaponinA-G (24,25). A no. of xanthenes have been isolated from p.tenuifolia including 4-c (B-Dapiofuronosyl-(1-6) B-Dglucopyranosyl) 1,3,6 trihydroxy & methoxyxanthones(22).
Triterpenoid saponin

Sapogenin

Polygalic acid

Methyl salicylate

Polygalitol

Senegin III

Senegin I
Traditional claims

Polygala senega is a pioneer species relatively high in bioactive secondary compound and are important for variety of functions is economically used as a source of fat resin sterol and saponins. Senega snakeroot was utilized by a senega Indians in treatment of rattlesnake bite. The root is ground into powder and used in various patent medicine particularly in cough medicine as a stimulant expectorant it is present in same prescription drug used in treatment of bronchitis and asthma. Senega plant is therapeutic used in Anti-cancer, Anti-dote, CNS depressant, Expectorant, Bronchial asthma, snakebite, Pneumonia Antifungal. Senega snakeroot is also used in veterinary medicine aside from its side effects on respiratory system. It promotes perspiration and urination.

Ethanopharmacological claims

Hypoglycemic activity

Yohikawa M. et al. (1995) has explained the significant hypoglycemic effects on rats Senegin II (2.5mg/kg), intraperitonially reduced blood glucose concentration in normal rats. The ethanolic extract of it has been reported to useful in cancer treatment. (42). Senegine II AND E, Z- senega-saponins a and b have significant hypoglycaemic effects in rodents (38) senegine II (2.5mg/kg) intraperitonially reduced blood glucose concentration in normal mice from 220mg/dl to 131mg/dl 4 hours after administration and also significantly lowered blood glucose concentration in mice from 434mg/dl to 142mg/dl under similar test condition (p<0.001, compared with control, for both studies). In glucose tolerance test in rats, administration of E, Z-senegasaponin a and b (100mg/kg) orally resulted in glucose concentration of 107-123mg/ml after 30 minute compared with 156mg/ml in control animals (p<0.001) (31,43).

Anticancer activity

Boerickie W. (1976) has explored the chemotherapy of lung cancer. The treatment of lung cancer recommended intake of alternative medicine of *Polygala senega*. The ethanolic extract of it has been reported to useful in cancer treatment. (42). Senegine II AND E, Z- senega-saponins a and b have significant hypoglycaemic effects in rodents (38) senegine II (2.5mg/kg) intraperitonially reduced blood glucose concentration in normal mice from 220mg/dl to 131mg/dl 4 hours after administration and also significantly lowered blood glucose concentration in mice from 434mg/dl to 142mg/dl under similar test condition (p<0.001, compared with control, for both studies). In glucose tolerance test in rats, administration of E, Z-senegasaponin a and b (100mg/kg) orally resulted in glucose concentration of 107-123mg/ml after 30 minute compared with 156mg/ml in control animals (p<0.001) (31,43).

CNS depressant activity

Carretero M. et al. (1986) has observed the CNS depressant activity of *Polygala senega* methanol extract. The sleep time of mice is increased 30-40 minute as compared with chlorpromazine hydrochloride. A methanolic extract of *Polygala senega* has induced sleep. (45). CNS depressant properties in mice (example reduction in spontaneous activity inhibition of amphetamine stimulation, poyention of barbiturate –induced sleeping time, and decrease in rectal temperature)have been documented for polygala senega (32) similar properties have been reported for polygala tenuifolia and have been attributed of the saponin constituents. Amethanolic extract of *P.tenuifolia* various fraction and pure onjisaponins B, F and G prolonged hexobarbital sleeping time in mice. Onjisaponin F produced sleep times in mice of 33 and 35 minutes for chlorpromazine hydrochloride (2mg/kg).(31,45).

Inhibition of alcohol absorption

Yohikawa M. et al. (1995) Has explained the inhibitory effects on alcohol absorption in rats. E, Z-senegasaponin (100mg/kg) administer orally to rats 1 hour after given 20% aqueous Ethanol. 5ml/kg reduced blood alcohol concentration after one hour from 0.5- 0.2mg/ml. (29,31). E,Z-senegasaponin a and b from *p.senega* var. *latifolia* have potent inhibitory effects on alcohol absorption in rats. E,Z-senegasaponin aor b (100mg/kg) administered orally to rats 1 hour after 20% aqueous ethanol (5ml/kg) reduced blood alcohol concentration after one hour 0.5mg/ml to0.02mg/ml. (10) Under similar test conditions, E, Z-senagin II administration led to blood ethanol concentration of 0.009mg/ml.(33).

Hypolipidaemic activity

Masuda M. et al. (1996) has explained the hypolipidemic activity of *Polygala senega* methanolic extract. 5mg/kg intraperitonially dose of polygala senega methanolic extract decrease the triglyceride concentration in blood of mice. Seven hour after administration of an n-butanol fraction of a methanolic extract of polygala senega var. *latifolia* containing senegine II (5mg/kg). intraperitonally (40),The mean standard deviation blood triglyceride concentration was 65mg/100ml compared with 152mg/ml in control animals (p<0.005) under the similar test condition. Pure senegine II at a dose of 5mg/kgwas also reported to lower triglyceride concentration in mice (23 31).

Antiviral, Antifungal, and Antibacterial activity

Hamburger M. et al. (1984) also reported the antiviral activity of aqueous extract of *Polygala senega*. Guinea
pig serum taken 2 hours after administration of lyophilized aqueous extract of *P. tenuifolia* (600mg intraperitoneally) inhibited the growth of herpes simplex virus type 1 (HSV1) in vero cell. An unspecified senegin from *P. senega* produced a 34% inhibition of influenza virus (A2/japan 305) at a concentration of 12.5 microgram/ml. An ethanolic extract of *P. senega* has been reported to inhibit growth of fungi (46, 31). Polygala erioptera and *P. peniculata* have exhibited mollusciscidial activity and *P. paniculata* is reported to possess antifungal activity. (17) Hamburger M. et a. (1984) has been reported the antifungal activity of polygala senega. A n-butanolic fraction of polygala senega contains onjisaponin (100mg/ml) inhibit the cyclic adenosine monophosphate. It shows the antifungal activities on rats. (34, 46).

Snakebite
Tyler V. E. (19870 has explained the in vitro test sterol. It has been found to display a large array of Pharmacological properties and, it inhibits the anti-inflammatory activity of activity snakebite by alcoholic extract of *Polygala senega* on dogs. It also inhibit the poison of snake bite.

Anti-ulcer activity
Yamahara J. et al. (1975) has been reported 50% methanolic extract of *Polygala senega* shows the antiulcer activity. Intragastric administration of 50% methanolic extract of *Polygala senega* root (2mg/kg body weight) inhibited stress induced gastric ulcer in rats.

Expectorant activity
Boyd E. M. et al. (1946) has investigated in vitro Expectorant activity. Intragastric administration of a fluid extract of radix senegae (0.1-10 ml/kg) body weight enhance the production of respiratory tract fluid decererebrate or anesthetized animals. (39). Misawa M. et al (1980) has showed the expectorant activity of *Polygala senega* root administration of a syrup to anesthetized dogs. It increased the volume of respiratory tract fluid within 5-30 min. (P<0.001) after 2 hours, the fluid volume in the treatment group was 0.001ml in control animals treated with saline. (36). The expectorant activity of crude drug is due to the constituents’ saponin, which produce local irritation of the mucous membrane of throat and respiratory tract. This irritation stimulates and increases in bronchial secretion. The diluting mucous reducing the surface tension its viscosity in oral administration of fluid. Extract of Polygala senega was shown to reduce the viscosity of mucous in patients with bronchitis (31, 40).

Side effect and toxicity
Saponin of *Polygala senega* are generally regarded as irritant to the gastrointestinal mucosa, and irritant properties have been documented for senega plant and for related senega species (51). Large doses of senega are reported to cause vomiting and purging. (47)

Conclusion
In the present comprehensive review, we reffered primary and secondary data to compile the information based on taxonomy, origin, distribution, and pharmacological claims on *Polygala senega* (Linn). Traditionally the plant used widely for the treatment of various ailment but scientifical few of them was screened out. Thus the scientific studies should be conducted to investigate the unexploited potential of *Polygala senega* (Linn).

References
10. PM cattling L. Medicinal crops agriculture and agrifood Canada.2012.
14 Kim, H.M. et al. 1998 effect of polygala senega root extract on the tumour necrosis factor alpha .secretion from mouse astrocytes Journal of ethanopharmacology research 9(1) 74-76.
15 TeresaM.V.M & Avita, S. 1989. Dormacyand germination behaviour or polygala chinesis L; medicinal plants Feddes Repertorium 100(7-8) 357-362.
27 Harris G.H.; 1891 Roots found of Seneca Indians P rac. Rochester Acad. Sci.: 1: 106-115
29 Yohikawa etal E.senega saponin A&B-Z , senegen II &III type inhibitor of ethanol absorption in rats from .senegae radix, the root of Polygala senega

41 Who monograph on selected medicinal plants volume (II) 2004, 358.
43 Shukla A et al International journal of biomedical and advance research, Herbal remedies od diabetis, 2011, 57-68.

44 Tyler V.E. et al. bioassay of phallanthus (Euphorbiaceae) a compilation II The subgenus phyllanthus. Journal of ethanopharmacology 34, 97-133.

How to cite this article

Source of Support: Nil; Conflict of Interest: None declared

Received: 10.11.14; Revised: 21.12.14; Accepted:31.12.14

© Sakun Publishing House (SPH): IJPLS

4208