Study of *Withania somnifera* with the spatial reference of phytochemical, FTIR and flavonoids quantification

Rajeev Nema¹, Parul Jain¹, Sarita Khare¹, Alka Pradhan¹, Abhishek Gupta¹ and Dharmendra Singh¹

1, Sarojini Naidu Government Girls Post Graduate (Autonomous) College, Bhopal, (M.P.) - India
2, Center for Microbiology & Bio-Technology Research and Training, Bhopal, (M.P.) - India

Abstract

Plant is oldest existing complete medical significance in the world. Its origins go back nearly 5000 years. In this research article make known on *Withania somnifera* (Ashwagandha) as Medicinal plants have therapeutic potential due to the presence of natural antioxidants functioning as reducing agents, free radical scavengers and quenchers of singlet oxygen. Majority of different medicinal plant and their antioxidant activity is due to bioactive compounds viz. flavones, isoflavones, flavonoids, anthocyanins, coumarins, lignans, catechins and isocatechins. Extraction of the bioactive plant constituents has always been a challenging task for the researchers. And this article also provides an overview of extraction, photochemical analysis, Flavonoid quantification and FTIR analysis of *Withania somnifera* (Ashwagandha).

Key-Words: Medicinal Plants, *Withania somnifera*, Flavonoids

Introduction

It is evident that anti-oxidants play an important role in the prevention of cancer, cardiovascular and neurogenerative diseases. There has been a surge of research in its effect in animal models of atherosclerosis, hyperlipidemia, myocardial infarction, myocardial ischemia reperfusion injury, cerebral ischemia, cardiomyopathy, cardiac hypertrophy, cardiotoxicity and congestive heart failure. 13 different constituents of WS for their anti proliferative capabilities on lung, colon, central nervous system (CNS), and breast tumor lines (Jayaprakasam B et al 2003). Many pharmacological studies have been conducted to investigate the properties of ashwagandha and to authenticate its use as a multi-purpose medicinal agent. Studies on *Withania somnifera* suggests that it reduces tumor cell proliferation and enhances the effectiveness of radiation therapy while potentially mitigating undesirable side effects (Kaur et al., 2004). *Withania somnifera* Dunal (WS), commonly known as ashwagandha, has been used for centuries in Ayurvedic medicine to increase longevity and vitality (Altern Med Rev 2004). WS acts as an anti-inflammatory agent through inhibition of complement, lymphocyte proliferation, and delayed-type hypersensitivity (Rasool M et al 2006).

* Corresponding Author
E-Mail: rrsht.nema@gmail.com

Scientific classification

- **Kingdom:** Plantae
- **Order:** Solanales
- **Family:** Solanaceae
- **Genus:** Withania
- **Species:** somnifera

Fig. 1: *Withania somnifera*

Material and methods

Plant material collection

Plant *withania somnifera* ware collected from sanjivani ayurvedic nursery Bhopal during October month. Than dried up under the shed dry for three week furthermore crush it.
Saxhlet extraction: acetone water (1:1)
Saxhlet extraction is only required where the desired compound has a limited solubility in a solvent, and the impurity is insoluble in that solvent. If the desired compound has a high solubility in a solvent then a simple filtration can be used to separate the compound from the insoluble substance. The advantage of this system is that instead of many portions of warm solvent being passed through the sample, just one batch of solvent is recycled. This method cannot be used for thermo labile compounds as prolonged heating may lead to degradation of compounds (Nikhal SB, et al 2010).

Phytochemical analysis
Phytochemical analysis is a major procedure for estimation of particular chemical compound so that following saxhlet extraction crude drug evaporated under steam bath tank. And Phytochemical analysis was proceeded by the help of different specific method for each test. All phytochemical analysis (test) has been done by the using Kokate (Practical Pharmacognosy) as a reference book.

Total flavonoid estimation
Total flavonoid contents were measured with the aluminum chloride colorimetric assay. Hydro-alcoholic extracts that has been adjusted to come under the linearity range and different dilution of standard solution of Quercetin (10-100μg/ml) were added to 3ml of water. To the above mixture, 0.1ml of 5% C6H5O6-KNa-4H2O was added. After 5 minutes, 0.1ml of 10% AlCl3 was added and the total volume was made up to 3 ml with distill water. It was left at room temperature for 30 min after which the absorbance of the reaction mixture was measured at 430 nm with a single beam Visible spectrophotometer, Systronic (106).

Results and Discussion
The FT-IR analysis of the samples was done and the functional groups associated were determined (Fig.2). The FT-IR spectrum of the sample was obtained effective peaks. The FT-IR spectrum of the Withania somnifera samples recorded the number of peaks lying between 3320.29 cm⁻¹,2945.67 cm⁻¹, 2834.64 cm⁻¹,1652.83 cm⁻¹,1449.39 cm⁻¹,1417.14 cm⁻¹,1113.62 cm⁻¹,1016.45 cm⁻¹,755.15 cm⁻¹,575.61 cm⁻¹,546.14 cm⁻¹, 534.78 cm⁻¹, 510.12 cm⁻¹ respectively. This finding helps in further research in the investigation of other medicinal plant with different solvent fraction for their antioxidant activity and it also useful to utilize of Withania somnifera plant as a source medicine. Current study revealed the flavonoid contents of the leaves, of withania somnifera. (Quercetin standard plot: y =0.0966x, R²=0.9878) (Elizia Khatiwora et al 2010). On the basis that calibration curve was plotted by preparing the Quercetin solutions at concentrations 12.5 mg/ml-1. Total flavonoid content of the extracts was expressed as percentage of flavonoid in plant extract 4.78 equivalents per dry weight of sample and take notice of (Fig.3) y=0.002x+0.004, R² =0.999.

Current era herbal products are measured to be symbols of safety in comparison to the synthetic product that are regarded as hazardous to human life and environment. Although herbs had been priced for their therapeutic importance. But now everyday phytochemical and pharmacological studies are conducted on different parts of these plants. The present literature supports the potential of certain medicinal plants. More research can be done to investigate the unknown and unexplored potential of these plants. Further structural analysis of Withania somnifera plant (flavonoid compounds) can be carried out by way of making use of different analytical methods such as NMR and Mass spectrophotometer analysis.

Acknowledgement
The authors express gratitude Prof. Dr. USHA NAIR Department of chemistry government, M.V.M. College Bhopal & SIRT pharmacy department Bhopal for FTIR analysis facility and kind support.

References
inflammation: an *in vivo* and *in vitro* study.

<table>
<thead>
<tr>
<th>S/No.</th>
<th>Natural product</th>
<th>Test performed</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbohydrate</td>
<td>Molish test</td>
<td>+ve</td>
</tr>
<tr>
<td>2</td>
<td>Starch</td>
<td>Iodine</td>
<td>-ve</td>
</tr>
<tr>
<td>4</td>
<td>Protein</td>
<td>Millions</td>
<td>+ve</td>
</tr>
<tr>
<td>5</td>
<td>Amino acid</td>
<td>Cysteine test</td>
<td>+ve</td>
</tr>
<tr>
<td>6</td>
<td>Steroid</td>
<td>Salkowski test</td>
<td>+ve</td>
</tr>
<tr>
<td>7</td>
<td>Flavonoids</td>
<td>Ferric chloride test</td>
<td>+ve</td>
</tr>
<tr>
<td>8</td>
<td>Alkaloid</td>
<td>Mayer’s test</td>
<td>+ve</td>
</tr>
<tr>
<td>9</td>
<td>Tannic and phenolic compound</td>
<td>%5FeCl₃ test</td>
<td>+ve</td>
</tr>
<tr>
<td>10</td>
<td>Oxalic acid</td>
<td>Test</td>
<td>+ve</td>
</tr>
<tr>
<td>11</td>
<td>Inorganic acid</td>
<td>Sulphate test</td>
<td>+ve</td>
</tr>
</tbody>
</table>

Table 1: Phytochemical nature *W. somnifera*

Fig. 2: FTIR Spectrum of *Withania somnifera*

Fig. 3: Flavonoid quantification curve of *Withania somnifera*