

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

Phytochemical screening and HPTLC fingerprint analysis of bark extracts of *Ficus nervosa Heyne Ex Roth*

Bollywar Archana Devi*, G.S. Sushma, P. Sharaish, P. harathi, M. Rama Devi

and N. Siva Subraman<mark>ian</mark>

Department of Pharmaceutical Chemistry,

Teegala Krishna Reddy College of Pharmacy, Hyderabad, (A.P.) India

Abstract

This research analyzed major chemical components present in fresh extracts of stem bark of *Ficus nervosa*. Bark of *Ficus nervosa* was collected, powdered and defatted with petroleum ether and then extracted successively with chloroform, ethyl acetate and 90% alcohol. Preliminary phytochemical screening of the bark extracts of *Ficus nervosa* showed the presence of chemical constituents like alkaloids, glycosides, sugars and carbohydrates, flavonoids, tannins, phenolic compounds, etc. HPTLC finger print analysis of the *Ficus nervosa* bark extracts showed the presence of possible number of components. HPTLC finger print study demonstrated the consistent quality of chemical constituents. The experimental conditions as well as general comments on the application of chromatographic fingerprint analysis are discussed.

Key-Words: Ficus nervosa, Phytochemical constituents, HPTLC

Introduction

Herbal medicine is the oldest form of healthcare known to mankind. Herbs have been used by all cultures throughout history. Many plants synthesize substances that are useful for the maintenance of health in humans and other animals. Plants have been known to relieve various diseases in Ayurveda. Natural herbs are used as remedies for human ailments as they contain components of therapeutic values. The goals of using plants as sources of therapeutic agents are to isolate bioactive compounds for direct use as drugs, to produce bioactive compounds of novel or known structures as lead compounds for semisynthesis to produce patentable entities of higher activity and/or lower toxicity, to use agents as pharmacological tools, to use the whole plant or part of it as a herbal remedy¹.

Plants have always been a common source of medicaments, either in the form of traditional preparations or as pure active principles².

The herb, *Ficus nervosa* belongs to the family, Moraceae³. It is an evergreen tree distributed in China, India, Malaysia and throughout Taiwan. *Ficus* species (Moraceae) are plants well known all over the world as "fig plant".

* Corresponding Author Email: bollywararchu@gmail.com screened for *in vitro* antimycobacterial activities, and *Ficus nervosa* has been found to be one of the active species. **Material and Methods**

Recently, over 1000 Formosan plants have been

Plant material

The plant specimens for the proposed study were collected from Tirumala hills, Tirupati. The plant was authenticated by Dr. Madhava Chetty, Department of Botany, Sri Venkateshwara University, Tirupati, India, and specimen was preserved at University herbarium, Voucher number 0603. The bark was separated from other parts, washed, cleaned and dried for further use.

Preparation of the Extract

The coarsely powdered plant material of *Ficus nervosa* stem bark was defatted with petroleum ether and extracted successively with chloroform, ethyl acetate and 90% ethanol using Soxhlet apparatus. The extract was filtered through a cotton plug, followed by Whattman filter paper (No.1). The extract was evaporated under reduced pressure using Rotovac evaporator.

Preliminary Phytochemical Screening

The plants may be considered as biosynthetic laboratory for multitude of compounds like alkaloids, glycosides, volatile oils, tannins, saponins, flavonoids etc. The preliminary phytochemical screening of all the

Int. J. of Pharm. & Life Sci. (IJPLS), Vol. 4, Issue 3: March: 2013, 2432-2436 2432

extracts of *Ficus nervosa* bark was carried out as per the standard procedure⁴.

High Performance Thin Layer Chromatography

HPTLC⁵ is a sophisticated and automated form of TLC. HPTLC is the fastest of all chromatographic methods. HPTLC precoated, silica gel G 60 F25 (Merck, Germany) plates were used for the application of sample. A small quantity of extracts was dissolved in respective solvents. Sample was applied on precoated plate with the help of Linomat 5 applicator. Solvent system optimized for TLC study was chosen for HPTLC study.

The details of HPTLC were as follows:-

Plate : Aluminium plate precoated with silica gel GF254

Thickness : 250µm

Plate size : 5×10 cm

Sample application : 10 µl

Solvent system : n-hexane : ethyl acetate (8.5 : 1.5 v/v) Detection : U.V. (Visible light, 254nm, 366 nm)

Instrument : CAMAG TLC Scanner and densitometric evaluation with WINCATS software.

Results and Discussion

Preliminary phytochemical screening of the bark extracts of *Ficus nervosa* showed the presence of chemical constituents like alkaloids, glycosides, sugars and carbohydrates, flavonoids, tannins, phenolic compounds, etc. The results are given in Table: 1.

HPTLC shows separation of components present in the chloroform, ethyl acetate and 90% alcoholic extract of the stem bark of *Ficus nervosa*. The method may be applied to identify the plant of *Ficus nervosa* from other species. HPTLC fingerprint enables a particular plant to be identified and distinguished from closely related species.

The results from HPTLC finger print scanned at wavelength 420 nm for chloroform extract of *Ficus nervosa* bark. There are six polyvalent phytoconstituents and corresponding ascending order of R_f values start from 0.07 to 0.94 in which highest concentration of the phytoconstituents was found to be 27.75% and its corresponding R_f value was found to be 0.57.

The results from HPTLC finger print scanned at wavelength 420 nm for Ethylacetate extract of *Ficus nervosa* bark. There are fourteen polyvalent phytoconstituents and corresponding ascending order of R_f values start from 0.10 to 0.94 in which highest

concentration of the phytoconstituents was found to be 16.64% and its corresponding $R_{\rm f}$ value was found to be 0.10.

The results from HPTLC finger print scanned at wavelength 420 nm for Alcoholic extract of *Ficus nervosa* bark showed that there are eight polyvalent phytoconstituents and corresponding ascending order of R_f values start from 0.09 to 0.92 in which highest concentration of the phytoconstituents was found to be 47.48% and its corresponding R_f value was found to be 0.92.

The R_f values for different extracts were given in

Table: 2, Table: 3 and Table: 4 respectively.

The chromatograms of different extracts were given in

Fig: 2, Fig: 3 and Fig: 4 respectively.

Conclusion

Secondary metabolites are present and they are responsible for therapeutic effects.

HPTLC study as recommended in this study provides a chromatographic fingerprint of phytochemicals and is suitable for confirming the identity and purity of medicinal plant raw material.

HPTLC pre-coated plates with the mobile phase nhexane : ethyl acetate developed chromatograms which showed distinct phytochemical variations in chloroform, ethyl acetate and hydro alcoholic extracts.

Acknowledgement

My sincere thanks to the principal and the management, Teegala Krishna Reddy College of Pharmacy, Meerpet, Hyderabad, for providing necessary facilities to carry out the research work.

References

- 1. Fabricant D. S. (2001). Approaches to drug discovery using higher plants, *Environmental Health Perspectives*, 109 (1): (March): 69-75.
- 2. Norman R. Farnsworth. (1985). Medicinal plants in therapy, *Bulletin of the World Health Organization*, 63 (6): (June): 965–981.
- 3. Yang Y. P. (1996). Flora of Taiwan Moraceae, 2nd edition, Editorial Committee of the Flora of Taiwan, 145-188.
- 4. Khandelwal. K.R. (2007). Practical Pharmacognosy – *Techniques and Experiments,* 17th edition, Nirali Prakashan, 149-156.
- 5. Manmohan Srivastava. (2011). High Performance Thin Layer Chromatography, 1st edition, Springer, 1-11.

Int. J. of Pharm. & Life Sci. (IJPLS), Vol. 4, Issue 3: March: 2013, 2432-2436 2433

Constituents	Test	Pet. ether extract	Chloroform extract	Ethyl acetate extract	90% ethanolic extract
	Mayer's reagent	C 1211	+	+	+
Alkaloids	Dragendorff's reagent	1 1 1 1 2	W/A+7	+	+
	Hager's reagent	-	+310	+	+
	Wagner's reagent	-	+	+	+
	Molish's reagent	-	-	7+	+
Sugars &	Barfoed's test	_	-	+	+
Carbohydrates	Fehling's test	-		+	+
18	Benedict's test			+ <	+
15	Keller-Killiani test	-	+	+	+
Glycosides	Borntrager's test	-	+	+	+
Ciycosides	Legal's test	-	+	+	
124	Baljet's test	-	+	+	(F)
12	L-Burchard test	+	+	-	
1 m 10	Salkowski test	+	+	-	7.45
Steroids	Libermann's test	+	+	-	- 6
1	Ferric chloride test	- (1	-	+	+ 00
Tannins	Lead acetate test	-	-	+	+
<u> </u>	Gelatin solution test	-	-	+	+ 30/03
	Bromine water	-	and the second s	+	+
50	Potassium dichromate test	1	35	-	+
	Million's test)	-	+	+
Drotain	Biuret test	mel J		+	+
FIOLEIII	Xanthoprotein test	1 1 1	-	+	+
Amino acid	Ninhydrin test		-	-	-
Terpenoids	Noller's test	-	-	+	+
Flavonoids	Shinoda test	- 10.	-	/1 +	+
Anthocyanins	Sodium hydroxide test	-	-	/ LA	
Quinone	Sodium hydroxide test				- / /
Saponin	Foam test	-	-	- 3	- /
Phenolic	Ferric chloride test	-	-	+	+ //
compounds	Lead acetate test	-	-	+	+
	Gelatin solution	-	-	-	- //
Fixed oil and fata	Spot test	-		-	-
Fixed on and lats	Saponification test			-	11
Gums, mucilage	Swelling test	_	- 7.00	-	
Desing	Turbidity test	-		22	- 11
Resins	Hydrochloric acid test	_		Section 1	

Table: 1 Preliminary Phytochemical Studies of Extracts of FNB

Where: + Present, - Absent

Int. J. of Pharm. & Life Sci. (IJPLS), Vol. 4, Issue 3: March: 2013, 2432-2436 2434

[Devi et al., 4(3): March., 2013] ISSN: 0976-7126

Fig. 2: Chromatogram of Chloroform Extract

Int. J. of Pharm. & Life Sci. (IJPLS), Vol. 4, Issue 3: March: 2013, 2432-2436 2435

[Devi et al., 4(3): March., 2013] ISSN: 0976-7126

Table 3: R_f values for Ethyl acetate Extract

P	eak I	Start Position	Start Height	Position	h Heigh	t %	Posit	ion He	ight	Are	na.	Area %
	1	0.00 Rf	3.7 AL	0.03 R	1 385.6 A	U 16.64	% 0.1	0 Rf 35.	9 AU	11012.	9 AU	13.93
	2	0.10 Rf	60.9 AL	0.11 5	Rf 73.5 A	U 3.17	% 0.1	4 Rf 31.	5 AU	1245.	3 AU	1.58
	4	0.14 Rf	17.7 AL	0.13 R	t 20.5 A	U 0.88	% 0.2	4 Rf 2.	5 AU	366.	9 AU	0.46
	5	0.35 Rf	0.1 AL	0.38 R	1 23.2 A	U 1.00	% 0.3	9 Rf 8.	2 AU	251.	6 AU	0.32
	6	0.41 Rf	9.4 AL	U 0.44 R	Rf 20.0 A	U 0.86	% 0.4	6 Rf 8.	0 AU	621	7 AU	0.79
	7	0.47 Rf	8.2 AL	1 0.55 R	Rf 186.7 A	U 8.06	% 0.5 × 0.5	7 Rf 53.	1 AU	8731.	O AU	11.04
	9	0.63 Rf	136.5 AL	0.64 R	(f 172.9 A	U 6.47	% 0.6	7 Rf 97.	1 AU	4254.	3 AU	5.38
	10	0.67 Rf	97.8 AL	0.71 6	Rf 378.1 A	U 16.32	% 0.7	4 Rf 50.	3 AU	14756.	3 AU	18.66
	44	0.74 Rf	161.2 AL	J 0.77 R	Rf 246.2 A	U 10.63	% 0.7	9 Rf 38.	5 AU	8763.	5 AU	11.08
115	12	0.79 Rf	238.7 AL	0.82 R	Rf 261.0 A	U 11.27	% 0.8 % 0.9	4 Rf 38. 2 Rf 34	O ALL	9842	1 AU	14.57
	14	0.92 Rf	105.1 AL	0.93 5	Rf 122.0 A	U 5.27	% 0.9	4 Rf 1.	4 AU	1188.	9 AU	1.50
1.OY												
1.5		Track	3,10:									
3		~										
100		500 - 1										
		400 -					AL	AGG en er at ed 41				
5								40				
		300 -							13			
						ALROG		ated4				
		200 -								14		
			2									
		100	N 3									
		100 -		*		oGenerated13				.	-	
5	-	100 -	0.10			0.50	0.00 0.5	70 0.80			1	-
5	1	100 - 0.00	Fig. 3	· Chrom	atogram	of Ethy	acetate	⁷⁰ 0.50 Extrac		••	7	-
5	7	100 -	Fig. 3 Tabl	Chroma e 4: R _f va	atogram alues for	of Ethy 90% Al	acetate coholic I	Extract	• •.	••	C	-
7	Peak	100 -	Fig. 3 Tabl	Chroma e 4: R _f va	atogram alues for	of Ethy 90% Al	acetate coholic I	Extrac Extrac Extract	o o.: 2t	ea	Area	1
٦	Peak	start Position	Fig. 3 Tabl	: Chroma e 4: R _f va Max	atogram alues for Max Height	of Ethy 90% Al	acetate coholic I End Position	Extrac Extrac Extract End Height	et Ar	ea	Area	
7	Peak	100 - 0000 Start Position	Fig. 3 Tabl	: Chroma e 4: R _f va Max Position	atogram alues for Max Height	of Ethy 90% Al Max %	obo of acetate coholic I End Position	Extract Extract End Height	t Ar	ea	Area %	
	Peak	Start Position	Fig. 3 Fig. 3 Tabl Start Height 0.5 AU	Chroma e 4: R _f va Max Position 0.03 Rf	atogram alues for Max Height 308.6 AU	of Ethy 90% Al Max % 30.57 %	acetate coholic I End Position	Extract Extract End Height	t Ar 7043	ea:	Area % 15.14	1 *
	Peak	Start Position	Fig. 3 Tabl Start Height 0.5 AU	: Chroma e 4: R _f va Max Position 0.03 Rf	atogram alues for Max Height 308.6 AU	of Ethy 90% Al Max % 30.57 %	acetate coholic I End Position 0.09 Rf	Extract Extract End Height 46.8 AU	Arv 7043	ea 3.9 AU	Area % 15.14	*
	Peak	Start Position 0.00 Rf 0.09 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf	atogram alues for Max Height 308.6 AU 51.4 AU	of Ethy 90% Al Max % 30.57 % 5.09 %	acetate coholic I End Position 0.09 Rf 0.15 Rf	Extract Extract End Height 46.8 AU 19.4 AU	• • • • • • • • • • • • • • • • • • •	ea 3.9 AU	Area % 15.14 3.75	*
	Peak	Start Position 0.00 Rf 0.09 Rf 0.32 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU	Chroma e 4: R _f va Max Position 0.03 Rf 0.09 Rf 0.33 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU	of Ethy: 90% Al Max % 30.57 % 5.09 % 1.74 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf	Extract Extract End Height 46.8 AU 19.4 AU 1.2 AU	Arv 27043 1744	ea 3.9 AU 1.1 AU 0.8 AU	Area % 15.14 3.75 0.41	8
	Peak	5tart Position 0.00 Rf 0.32 Rf 0.53 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU	Chroma e 4: R _f va Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10 4 AU	of Ethy: 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf	Extract Extract End Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU	Arv 7043 1744	ea 3.9 AU 1.1 AU 1.8 AU	Area % 15.14 3.75 0.41 0.21	9 9 9 9
	Peak 1 2 3 4	5tart Position 0.00 Rf 0.09 Rf 0.32 Rf 0.53 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU	: Chroma e 4: R _f va Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU	Arv 7043 1744 190	ea 3.9 AU 1.1 AU 0.8 AU 3.2 AU	Area % 15.14 3.75 0.41 0.21	3 3 3 3
	Peak 1 2 3 4 5	5tart Position 0.00 Rf 0.32 Rf 0.53 Rf 0.55 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 0.5 AU 5.9 AU	: Chroma e 4: R _f va Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf	Alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.63 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU	7043 7744 1744 190 98	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 3.0 AU	Area % 15.14 3.75 0.41 0.21 2.02	*
	Peak 1 2 3 4 5 6	***- Start Position 0.00 Rf 0.32 Rf 0.32 Rf 0.53 Rf 0.55 Rf 0.56 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4,4 AU	Chroma e 4: R _f va Max Position 0.03 Rf 0.03 Rf 0.33 Rf 0.59 Rf 0.59 Rf 0.70 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.63 Rf 0.72 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU	rt 7043 1744 190 939 1254	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70	* * * *
	Peak 1 2 3 4 5 6 7	Start Position 0.00 Rf 0.32 Rf 0.53 Rf 0.55 Rf 0.66 Rf 0.72 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 5.9 AU 4.4 AU	Chrome e 4: R _f va Position 0.03 Rf 0.33 Rf 0.59 Rf 0.59 Rf 0.70 Rf 0.75 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77 5 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.76 Rf	Extract End Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 76.7 AU	7043 7043 1744 190 98 939 1254 1660	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57	1 9 9 9 9 9 9 9 9 9 9
	Peak 1 2 3 4 5 6 7	Start Position 0.00 Rf 0.32 Rf 0.53 Rf 0.55 Rf 0.66 Rf 0.72 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 0.5 AU 5.9 AU 4.4 AU 27 4 AU	Chrome e 4: R _f vz Position 0.03 Rf 0.09 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.75 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.8 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU	7043 7043 1744 190 939 1254 1860	ea 3.9 AU 1.1 AU 0.8 AU 3.2 AU 3.2 AU 9.0 AU 1.6 AU 0.6 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.32 Rf 0.53 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1860 33599	ea 3.9 AU 4.1 AU 3.2 AU 3.2 AU 9.0 AU 4.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.09 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract End Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1860 33599	ea 3.9 AU 4.1 AU 3.2 AU 3.2 AU 9.0 AU 4.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethyl 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.72 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 3.2 AU 3.2 AU 3.0 AU 4.6 AU 9.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy: 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 3.2 AU 3.2 AU 3.0 AU 4.6 AU 9.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 42.6 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 3.2 AU 9.0 AU 4.6 AU 0.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	Start Position 0.00 Rf 0.32 Rf 0.53 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 4.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.72 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 3.2 AU 9.0 AU 4.6 AU 0.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	55000000000000000000000000000000000000	Fig. 3 Tabl Start Height 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 27.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU 0.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	100- 0.00 Rf 0.00 Rf 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf 0.70 R f 0.72 Rf 0.76 Rf 0.70 R f 0.72 Rf 0.76 R f 0.70 R f	5.9 AU 27.4 AU 76.9 AU 76.9 AU	• 30 • 50 • Chroma e 4: R _f va Max Position 0.03 Rf 0.03 Rf 0.33 Rf 0.33 Rf 0.59 Rf 0.59 Rf 0.75 Rf 0.75 Rf 0.86 Rf + acord	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.63 Rf 0.72 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 3.8 AU 26.8 AU 26.8 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU 0.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.02 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	100- 0.00 Rf 0.00 Rf 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf 0.76 Rf 0.70 R f 0.72 Rf 0.76 Rf 0.70 R f 0.70 R f	5.9 AU 27.4 AU 76.9 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.53 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract End Height 19.4 AU 1.2 AU 5.6 AU 26.8 AU 26.8 AU 26.3 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU 0.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	100- 0.00 Rf 0.00 Rf 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf 0.76 Rf 0.07 Rf 0.70 Rf 0.72 Rf 0.76 Rf 0.70 Rf 0.	5.5 AU 5.5 AU 0.5 AU 47.1 AU 3.6 AU 0.5 AU 5.9 AU 27.4 AU 27.4 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.72 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 26.8 AU 26.8 AU 26.3 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.70 3.57 72.21	
	Peak 1 2 3 4 5 6 7 8	100- 0.00 Rf 0.00 Rf 0.00 Rf 0.32 Rf 0.55 Rf 0.66 Rf 0.72 Rf 0.76 Rf 0.70 Rf 0.70 Rf 0.72 Rf 0.76 Rf 0.70 Rf 0.	5.9 AU 27.4 AU 76.9 AU 76.9 AU	Chrome e 4: R _f vz Max Position 0.03 Rf 0.09 Rf 0.33 Rf 0.54 Rf 0.59 Rf 0.70 Rf 0.70 Rf 0.75 Rf 0.86 Rf	atogram alues for Max Height 308.6 AU 51.4 AU 17.6 AU 10.4 AU 22.0 AU 42.6 AU 77.5 AU 479.2 AU	of Ethy 90% Al Max % 30.57 % 5.09 % 1.74 % 1.03 % 2.18 % 4.22 % 7.68 % 47.48 %	acetate coholic I End Position 0.09 Rf 0.15 Rf 0.35 Rf 0.55 Rf 0.55 Rf 0.72 Rf 0.72 Rf 0.72 Rf 0.92 Rf	Extract Extract Height 46.8 AU 19.4 AU 1.2 AU 5.6 AU 26.8 AU 26.8 AU 26.3 AU 26.3 AU	7043 7043 1744 190 939 1254 1660 33599	ea 3.9 AU 4.1 AU 0.8 AU 3.2 AU 9.0 AU 4.6 AU 9.3 AU	Area % 15.14 3.75 0.41 0.21 2.70 3.57 72.21	

Fig. 4: Chromatogram of 90% Alcoholic Extract

Int. J. of Pharm. & Life Sci. (IJPLS), Vol. 4, Issue 3: March: 2013, 2432-2436 2436