Arthritis: an autoimmune disorder: Demonstration of In-vivo anti-arthritic activity

Pandey Shivanand
Smt. R. B. P. M. Pharmacy College, Atkot-360040, Rajkot, Gujarat, India

Abstract
In the normal knee joint, the synovium consists of a synovial membrane (usually one or two cells thick) and underlying loose connective tissue. Synovial-lining cells are designated type a (macrophage-like synoviocytes) or type B (fibroblast-like synoviocytes). Arthritis is an autoimmune disorder characterized by pain, swelling and stiffness. Its prevalence depends upon age. It occurs more frequently in women than in men. It is an inflammation of synovial joint due to immunomediated response. All antiinflammatory drugs are not antiarthritic because it does not suppress T-cell and B-cell mediated response. For evaluation of antiarthritis drugs inflammation and T-cell and B-cell mediated response by including foreign antigen should be suppressed. The high incidences of anti-CII antibodies and CII-specific T cells indicate that CII is one of the major autoantigens of human RA. In this way, the higher prevalences of CII-specific antibodies and T cells noted during the early phase of RA indicate that CII-specific immunity plays an important role in the initiation of inflammation in the articular joints. So, collagen type-II is best model for evaluation of anti-arthritic drugs compare to other models.

Keywords: Arthritis, synovial joint, synoviocytes, auto antigens

Introduction
Arthritis is an autoimmune disorder characterized by pain, swelling and stiffness. Its prevalence depends upon age. It occurs more frequently in women than in men. It is an inflammation of synovial joint due to immunomediated response. All antiinflammatory drugs are not antiarthritic because it does not suppress T-cell and B-cell mediated response. Rheumatoid arthritis (RA) is an autoimmune disorder characterized by synovial proliferation, inflammation, subsequent destruction like deformity of joints or destruction of cartilage and bone\(^1\). RA is the most common inflammatory joint disease in humans, has long been classified among the autoimmune diseases in which Skeletal complications start with focal erosion of cartilage followed by marginal and subchondral bone loss. Extended joint destruction with ankylosis and generalized bone loss are characteristic for late complications\(^2\). These long-term skeletal complications have serious consequences as they can lead not only to painful joint deformities but also to progressive functional disability and increased mortality rates\(^3\).
Epidemiological Study

Women it rose up to the age of 45 plateaued to 75. Epidemiological studies overall show a female to male ratio of about 3:1. But this all class of drugs is responsible for symptomatic relief. To evaluate the drug which actually prevent cause of arthritic or act during various step of arthritis there is requirement of evaluative model which produce arthritis in animal same that produce in humans. Animal models of arthritis are used to study pathogenesis of disease and to evaluate potential anti-arthritic drugs for clinical use. Therefore morphological similarities to human disease and capacity of the model to predict efficacy in humans are important criteria in model selection.

Pathophysiology of arthritis

In the early stages of rheumatoid arthritis, the synovial membrane begins to invade the cartilage. In established RA, the synovial membrane becomes transformed into inflammatory tissue, the pannus. This tissue invades and destroys adjacent cartilage and bone. The interface between pannus and cartilage is occupied predominantly by activated macrophages and synovial fibroblasts that express matrix metalloproteinases and cathepsins. IL-1 and TNF-α stimulate the expression of adhesion molecules on endothelial cells and increase the recruitment of neutrophil into the joints. Neutrophil release elastase and proteases, which degrade proteoglycan in the superficial layer of cartilage. The depletion of proteoglycan enables immune complexes to precipitate in the superficial layer of collagens and exposes chondrocytes. Chondrocytes and synovial fibroblasts release matrix metalloproteinase (MMPs) when stimulated by IL-1, TNF-α, or activated CD4+ T cells. MMPs, in particular stromelysin and collagenases, are enzymes that degrade connective-tissue matrix and are thought to be the main mediators of joint damage in RA. In animals, activated CD4+ T cells stimulate osteoclastogenesis, and they may cause joint damage independently of IL-1 and TNF-α in patients with RA.

![Diagram](image)
Fig1: Describe pathophysiology of rheumatoid arthritis

Evaluation of Antiarthritic parameter is that it gives sympathetic relief main prevent Inflammation and pain. So the must posses Analgesic, Anti inflammatory property, arthritis is immune. So drug should be immune modulators. For
that parameters Antiarthritic activity is evaluate. Joint fluid evaluation Baseline evaluation of renal and hepatic function also is recommended because these findings will guide medication choices on their guideline various experimental parameters are create to anti –arthritic activity in animal like, Paw edema, Body weight,Arsritic index, Erythrocyte Sedimentation Rate (ESR), Quantitative determination of the Rheumatoid Factors (RF),Histopathology of synovial joints, Radiology (x-Ray measurements),Photographic parameter

a) Paw edema:

Paw volumes of both hind limbs are record on the day of arthritis induction, and again measured on day first; third, fifth, ninth, up to last day of experiment using mercury column plethysmometer.on last day of experiment rheumatoid arthritis becomes more evident and inflammatory changes spreads systemically and becomes observable in the limb not inducted with arthritis.

Arthritic Index: All the animals are closely observed for organs like ears, nose, tail, fore paws and hind paw and arthritic index (Pearson CM, 1959) was calculated.

Erythrocyte Sedimentation Rate (ESR): The westergren method is use for measurement of ESR.

Reumatoid Factor: The latex turbidimetry method is use in the present study using RF turbilatex kit. Calibration is carried out for linear range up to 100 IU/ml. The reading of RF factor of all the groups obtained is compare with the control animals and is express as IU/ml RF

Histopathology of Synovial Joints: The synovial joint is isolated for the biopsy examination of synovium proliferation, synovial lining angiogenesis, and rheumatoid inflammation. This destruction was separately graded on a scale from 0 to 3, ranging from no abnormalities to complete loss of cortical and trabecular bone of the femoral head. Cartilage and bone destruction by pannus formation was scored ranging from 0, no change; 1, mild change (pannus invasion within cartilage); 2, moderate change (pannus invasion into cartilage/subchondral bone); 3, severe change (pannus invasion into the subchondral bone); and vascularity (0, almost no blood vessels; 1, a few blood vessels; 2, some blood vessels; 3, many blood vessels).

Radiography: Radiographs are carefully examined using a stereo microscope and abnormalities are grade as follows: periostaeal reaction, 0-3 (none, slight, moderate, marked); erosions, 0-3 (none, few, many small, many large); joint space narrowing, 0-3 (none, minimal, moderate, marked); joint space destruction, 0-3 (none, minimal, extensive, ankylosis). Bone destruction was scored on the patella as described previously.

Experimental arthritis: a few examples of animal models

Many animal models of RA are available. Early models were intended for investigating etiological hypotheses or conducting pharmacological studies (Table 1).

<table>
<thead>
<tr>
<th>Immune arthritis</th>
<th>Intraarticular antigens, Adjuvants, Collagen type II, Streptococcal wall, Pristane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious arthritis</td>
<td>Retrovirus, Erysipelothrix, Chlamydiae, Mycoplasmas (M. arthritidis),</td>
</tr>
<tr>
<td>Chemical arthritis</td>
<td>Macromolecules (dextran, carrageenan)</td>
</tr>
</tbody>
</table>

Rat models of erosive arthritis can be classified into three major groups (I) Arthritis induced by hyperimmunization type II collagen (collagen-induced arthritis) or cartilage oligomeric matrix protein (COMP-induced arthritis) in incomplete Freund’s adjuvant (IFA). (II) Arthritis induced by oil-based adjuvants e.g. Mtb-adjuvant-induced arthritis, avridine-induced arthritis, pristane, pristane-induced arthritis. (III) bacterial cell wall peptidoglycan polysaccharide-induced arthritis e.g. streptococcal cell wall (SCW) arthritis model, pristane-induced arthritis (PIA) and proteoglycan-induced arthritis.

Comparison of rat and mouse models of erosive arthritis to rheumatoid arthritis (RA) in humans (Table 2)

<table>
<thead>
<tr>
<th>Model</th>
<th>Similarities to human disease</th>
<th>Differences from human disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen-induced</td>
<td>Symmetrical joint involvement, peripheral joints</td>
<td>Anti-collagen responses not present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arthritis Type</th>
<th>Symptoms</th>
<th>Genetic Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthritis (CIA) in rats</td>
<td>Affected, persistent joint inflammation, synovial hyperplasia, inflammatory cell infiltration, marginal erosions, presence of Rheumatoid Factor and anti-collagen antibodies</td>
<td>Genetically regulated by MHC and non-MHC genes, responsive to most therapies effective in RA</td>
</tr>
<tr>
<td>Adjuvant-induced arthritis (AIA) in rats</td>
<td>Symmetrical joint involvement, peripheral joints affected, persistent joint inflammation, synovial hyperplasia, inflammatory cell infiltration, marginal erosions, genetically regulated by MHC and non-MHC genes, and responsive to most therapies effective in RA</td>
<td>Rapid explosive onset of highly erosive polyarthritis, monophasic course, involvement of axial skeleton, No Rheumatoid Factor, gastrointestinal, genitourinary tract and skin affected; periostitis, bony ankylosis extra-articular manifestations not typical of RA.</td>
</tr>
<tr>
<td>COMP-induced arthritis in rats</td>
<td>Symmetrical joint involvement, peripheral joints affected, persistent joint inflammation, immune responses to proteins in the cartilage, genetically regulated by MHC and non-MHC genes</td>
<td>No permanent destruction of joints, transient disease</td>
</tr>
<tr>
<td>Proteoglycan-induced arthritis in mice</td>
<td>Symmetrical joint involvement, peripheral joints affected, persistent joint inflammation, synovial hyperplasia, inflammatory cell infiltration, marginal erosions, presence of Rheumatoid Factor and circulating auto antibodies to collagen type II, deposition of immune complexes, genetically regulated by MHC and non-MHC genes</td>
<td>Development of spondylitis</td>
</tr>
<tr>
<td>Streptococcal cell wall-induced arthritis</td>
<td>Symmetrical joint involvement, peripheral joints affected, persistent and relapsing joint inflammation, synovial hyperplasia, inflammatory cell infiltration, marginal erosions, greater disease susceptibility in females, genetically regulated by MHC and non-MHC genes</td>
<td>No Rheumatoid Factor in rats</td>
</tr>
<tr>
<td>Carragenan induced arthritis</td>
<td>Symmetrical joint involvement, peripheral joints affected, persistent joint inflammation, synovial hyperplasia, inflammatory cell infiltration, marginal erosions, presence</td>
<td>No evidence of immune response.</td>
</tr>
</tbody>
</table>
The putative mechanisms have evolved as our immunologic knowledge has expanded, and have varied with the trends in immunology. Throughout these developments in understanding human RA, animal models have played a key role in defining mechanisms. Collagen-induced arthritis is an extensively studied animal model of RA because it shares both immunological and pathological features of human RA. CIA is primarily an autoimmune disease of joints, requiring both T and B cell immunity to autologous type II collagen (CII) for disease manifestation.

Conclusion

For evaluation of anti arthritic drugs inflammation and T-cell and B-cell mediated response by including collagen type-II (bovine collagen). This foreign collagen produces auto immune response. Type II collagen as an auto antigen in human RA and collagen-induced arthritis (CIA). Most autoimmune diseases involve the development of autoimmunity to autologous proteins and have been probed for auto reactive T cells and antibodies in both human disease and animal models. The high incidences of anti-CII antibodies and CII-specific T cells indicate that CII is one of the major auto antigens of human RA. In this way, the higher prevalence’s of CII-specific antibodies and T cells noted during the early phase of RA indicate that CII-specific immunity plays an important role in the initiation of inflammation in the articular joints. So, collagen type-II is best model for evaluation of anti-arthritic drugs compare to other models.

References